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Introduction

It is widely documented that the progression of cancer cell
invasion and metastasis is hinged on the ability of tumor
cells to produce and recruit proteolytic enzymes. Among the
diverse proteolytic enzyme systems produced by human can-
cers, the plasminogen activator-plasmin system is preferen-
tially involved in cancer cell invasion and metastasis (Dano
and Romer, 1999; Jan and Van der Pluijm, 1999). The plas-
minogen activators are a group of proteolytic enzymes exist-
ing mainly as urokinase-type plasminogen activator (uPA)
and tissue-type plasminogen activator (tPA) (Dano and
Andreasen, 1985).

uPA, a trypsin-like serine protease, is the key initiator of
the extracellular proteolytic cascade driving cellular invasive-
ness (Saksela, 1985; Testa and Qiugley, 1990; Gunzler and
Steffens, 1982). Proteolytically active uPA is a disul-
fide-linked two-chain protein generated from proteolytically
inactive pro-uPA by the hydrolysis of the Lys158-Ile159 pep-
tide bond (Mignatti and Robbins, 1986). Urokinase is se-

creted by tumor cells or adjacent stroma and exists either as
the free enzyme or bound to its cell-surface receptor, uPAR.
Binding to uPAR significantly increases the rate of cell sur-
face-associated plasminogen activation by urokinase and can
serve to spatially focus its activity. The uPA/uPAR complex
plays a role in many normal physiological events, such as
wound healing, but is also involved in tissue remodeling of
various diseases, including arthritis (Cook and Braine, 2002;
Busso and Pleclat, 1997), atherosclerosis (Noda-Heiny and
Daughety, 1995; Carmeliet and Moons, 1997; Falkenberg and
Giglio, 1998; Preissner and Kanse, 1999), vascular restenosis
(Kanse and Benzakour, 1997), and cancer. In particular, ur-
okinase is implicated in many tumor-associated processes, in-
cluding extracellular matrix degradation, invasion, angio-
genesis, and metastasis (Rabbani and Xing, 1997; Blasi,
1999)(Andreasen and Kjoller, 1997; Achbarou and Kaiser,
1994; Duffy, 2002).

Nowadays small-molecule inhibitors of urokinase have al-
ready been shown to inhibit tumor metastasis and slow can-
cer growth. Several compounds have been reported to inhibit
uPA’s activity at low micromolar or even nanomolar concen-
trations, and we found that all of the reported inhibitors of
urokinase contain an amidine or guanidine group, and com-
pounds designed from templates containing these positively
charged moieties can be a liability in the search for oral
therapeutic agents. Therefore, there is a need for alternative
small-molecule inhibitors of urokinase which have favorable
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pharmacokinetic properties (Hajduk and Boyd, 2000).
With these recent experimental results, we decided to ex-

ploit this wealth of information to develop a small mole-
cule-derived pharmacophore model. The approach we are us-
ing here is to develop a pharmacophore model using the
HypoGen module in Catalyst (Accelrys, Inc., San Diego, CA,
2005) which can be used to correlate the observed biological
activities for a series of compounds with their chemical
structures. The 24 different kinds of compounds with bio-
logical activity data, covering six orders of magnitude were in-
cluded in our study. These molecules were selected to span
the range of activities from the most active compounds to al-
most completely inactive molecules that are publicly available.

As there is no report on developing pharmacophore mod-
els using newly published inhibitors of uPA until now, this
present paper provides a hypothetical image of the primary
pharmacophore features responsible for activity, and it is ex-
pected to provide useful knowledge for discovering novel po-
tential inhibitors targeted to uPA.

Methods

A number of classes of uPA inhibitors have been identi-
fied during last few years. We have collected a set of 472
molecules of uPA inhibitors from the literature using the
software MDL ISIS/base 2.5. The biological dataset was div-
ided into a training set (Table 1) and a test set. The training
set consists of 24 structures (Sturzebecher, 1999; Wilson,
2001; Subasinghe, 2001; Barber, 2002; Mackman, 2002;
Bruncko, 2005; Wendt, 2004; Barber, 2004; Karanewsky,
1990; Renatus, 1998; Verner, 2001; Wendt, 2004;) and was
selected by considering both structural diversity and wide
coverage of the activity range (Ki ranging from 0.00062 uM
to 72.4 uM (compound 1 and 24 respectively in Table 1).
These molecules, whose activity span a range of 6 orders of
magnitude, were selected based on the fact that each order of
magnitude is represented by at least three compounds, includ-
ing the most active and inactive ones. If two compounds had

Figure 1. Chemical structures of the 24 training set molecules.
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similar structures, they had to differ in activity by one order
of magnitude to be included in our dataset. Otherwise, we
selected only the most active one of the two. If two com-
pounds were found to have similar activities, they had to be
structurally distinct in order to be included. The structures of
the 24 uPA inhibitors used in the training set are given in
Figure 1.

Conformational analysis for each molecule was performed
using the Poling algorithm (Smellie, 1994) to improve the
broad coverage of the available conformational space. Poling
explicitly promotes the conformational variation that forces
similar conformers away from each other. All conformers are
treated equally, each is considered as a possible configuration
of functional groups or features. In this case, the setting in
conformer generation was 250 as the maximum number of

conformers for each molecule by using the ‘best conformer
generation’ option with 20 kcal/mol energy cutoff.

Uncertainty influences the first step, called the constructive
phase, in the hypothesis generating process (Guner, 2000).
The default uncertainty value of 3 was used for the com-
pound activity, representing the ratio of the uncertainty range
of measured biological activity against the actual activity for
each compound. Analysis of functional groups on each com-
pound in the training set revealed that five chemical features,
those are positive ionizable group (PI), hydrogen-bond ac-
ceptor (HA), hydrogen-bond donor (HD), hydrophobic ar-
omatic (Z), and ring aromatic (RA), could effectively map all
of the critical chemical features.

The ‘Best Compare/Fit’ procedure was then used in order
to evaluate the geometry of the conformers of the com-

Compound No. True Ki(uM)
Estimated
Ki(uM)

Error
factora

Fit
valueb

Activity
scalec

Estimated activity
scale

1 0.00062 0.00061 -1 9.27 +++ +++
2 0.002 0.0042 2.1 8.43 +++ +++
3 0.0021 0.0059 2.8 8.29 +++ +++
4 0.005 0.0026 -1.9 8.65 +++ +++
5 0.008 0.033 4.1 7.54 +++ +++

6 0.022 0.0085 -2.6 8.13 +++ +++
7 0.06 0.038 -1.6 7.48 +++ +++
8 0.091 0.041 -2.2 7.45 +++ +++
9 0.139 0.17 1.2 6.82 ++ ++
10 0.17 0.45 2.6 6.41 ++ ++
11 0.25 0.49 2 6.37 ++ ++

12 0.53 0.63 1.2 6.26 ++ ++
13 0.6 1.2 2 5.99 ++ +
14 0.82 2.9 3.6 5.59 ++ +
15 0.92 0.43 -2.2 6.43 ++ ++
16 1 0.97 -1 6.07 + ++
17 3.4 0.75 -4.5 6.18 + ++

18 4.6 5.5 1.2 5.32 + +
19 5.91 4.2 -1.4 5.44 + +
20 9.3 5.4 -1.7 5.33 + +
21 19 10 -1.8 5.04 + +
22 32.3 46 1.4 4.39 + +
23 56 24 -2.4 4.68 + +

24 72.4 61 -1.2 4.27 + +
aThe error factor is computed as the ratio of the measured activity to the activity estimated by the hypothesis or the
inverse if estimated is greater than measured.
bFit value indicates how well the features in the pharmacophore overlap the chemical features in the molecule.
cActivity scale: +++, Ki < 0.1 uM (highly active); ++, 0.1 uM < Ki < 1 uM (moderately active); +, Ki > 1 uM
(inactive).

Table 1. Actual biological data and estimated Ki of training set molecules based on pharmacophore model Hypo1
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pounds to test how well they fit the hypothesis. The fit value
represents the quality of the mapping between the compound
and the hypothesis; the better the overall superimposition of
functional groups of the molecule to the appropriate features
of the pharmacophore model, the higher the fit score
(Barnum and Greene, 1996).

Results and Discussion

Pharmacophore hypothesis generation

‘Fixed cost’ calculation carried out by the HypoGen in
Catalyst represent the simple model that fits all data perfect,
meanwhile, the ‘null cost’ calculation also persumes that
there is no statistically significant structure in the data and
the expertimental activities are distributed around their aver-
age value. Normally, when the difference between these two
values should be in a certain range, the pharmacophore hy-
pothesis will be meaningful. Here, we are now using a stand-
ard value of 70-100 bits for the pharmacophore hypothesis,
and also, the total cost of any pharmacophore hypothesis
should be close to the fixed cost to provide any useful
models.

Catalyst produces 10 hypotheses, and Hypo1 is the best
significant pharmacophore hypothesis shown the distance con-
straints between pharmacophore features in Figure 2. It is
characterized by the highest cost difference, lowest error cost,
and lowest RMSD as well as has the best correlation
coefficient. The fixed cost, pharmacophore cost, null cost and
configuration cost are 95.686, 102.126, 189.977, 13.835 bits

respectively. The top ranked hypothesis Hypo1 showed the
best result with a correlation of 0.973 and a RMSD of 0.695.
The cost values, correlation coefficients (r), RMSD, and fea-
tures for the top ten hypotheses are listed in Table 2.

From the table we can see 4 hypotheses including the best
Hypo1 have the same 5 features: one positive ionizable, one
hydrogen-bond acceptor and three hydrophobic aromatic
groups, while another 5 hypotheses are slightly different with
one ring aromatic replacing one hydrophobic aromatic group,
and the last hypothesis had only 4 features: one positive ion-

Hypotheses
No.

Training set
Featurea

Test set

Total cost Cost∆ RMSD Correlation(r) Correlation(r)

1 102.126 87.851 0.695 0.973 AZZZP 0.837

2 111.702 78.275 1.153 0.924 AZZRP 0.68

3 113.052 76.925 1.203 0.917 AZZRP 0.703

4 113.514 76.463 1.219 0.915 AZZRP 0.628

5 114.118 75.859 1.239 0.912 AZZZP 0.808

6 118.877 71.1 1.368 0.891 AZZRP 0.71

7 121.799 68.178 1.475 0.872 AZZZP 0.652

8 123.124 66.853 1.511 0.866 AZZP 0.663

9 123.368 66.609 1.517 0.865 AZZZP 0.639

10 124.118 65.859 1.537 0.861 AZZRP 0.65

Null cost of ten hypotheses is 189.977 bits. Fixed cost is 95.686 bits. Configuration cost is 13.835 bits.
aAbbreviation used for features: A, hydrogen-bond acceptor; Z, hydrophobic aromatic; P, positive ionizable; R, ring aromatic.

Table 2. Information of the cost values measured in bits RMSD, correlation values and features for top-ten hypotheses

Figure 2. The best hypothesis model Hypo1 produced by HypoGen
module in Catalyst 4.10 software, pharmacophore features are
color-coded with light blue for hydrophobic aromatic groups, red for
positive ionizable group and green for hydrogen-bond acceptor.
Distance range between pharmacophore features is reported in
angstroms. HA, hydrogen-bond acceptor group; PI, positive ionizable
group; Z1, hydrophobic aromatic 1; Z2, hydrophobic aromatic 2; Z3,
hydrophobic aromatic 3.
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izable, one hydrogen-bond acceptor and two hydrophobic ar-
omatic group.

Hypo1, identified as the best hypothesis, has estimated the
activity of the training set molecules accurately. In this study
all compounds were classified by their activity as highly ac-
tive (<0.1 uM, +++), moderately active (0.1-1 uM, ++) and
inactive (>l uM, +). Table 1 represents the actual and esti-
mated uPA inhibitory activity of the 24 training set mole-
cules based on the best hypothesis, Hypo1. Among 24 train-
ing set compounds, two moderately active compounds were
predicted as inactive, and two inactive compounds were pre-
dicted to be moderately active by Hypo1. Consequently, for
20 of 24 training set compounds, the predicted Ki (uM) val-
ues were within the same activity scale as the experimental
values in the training set.

Compound 1 shows a good fit with all features of the
pharmacophore hypothesis Hypo1. In this case, the hydro-
gen-bond acceptor group seems to be mapped by a nitrogen
atom in pyrimidine moiety, the positive ionizable sphere is
also mapped by a nitrogen atom, and the three aromatic fea-
tures are fitted by three phenyl rings, respectively. Figure 3
represents the top scoring hypothesis, Hypo1 aligned with the
most active compound 1 (Ki = 0.00062 uM) and an inactive
compound 18 (Ki = 4.6 uM) in the training set. The pre-
dicted activity for compound 1 and compound 18 are
0.00061 and 5.5 uM, and the fit values are 9.27 and 5.32
respectively.

Validation of the pharmacophore model generated from

uPA inhibitors

In order to validate our pharmacophore hypothesis, we
used a test set comprising of 251 molecules with uPA in-
hibiting activity from different activity classes and different
structural information. Activities are reported as Ki values
spanning from 0.001 uM to 100 uM ranging five orders of
magnitude. All molecules in the test set were built, mini-
mized as well as performed conformational analysis like the
molecules in the training set. A correlation coefficient of
0.837 generated using the test set compounds shown in
Figure 4 indicates a good correlation between the actual and
estimated activities, which means the Hypo1 we selected be-
fore is convictive. Moreover, an error value less than 10 in-
dicates that the activity predicted for all the molecules was
within one magnitude range. One of the most active mole-
cules, Test43, from the test set was selected to show its
mapping on the selected pharmacophore hypothesis, Hypo1
(Figure 5). The true and estimated activities of Test43 are
0.018 and 0.049 uM respectively.

Another approach to assess the quality of HypoGen hy-
pothesis is to apply cross validation using the Cat-Scramble

program available in Catalyst. The validation procedure de-
scribed here is based on Fischer randomization test. The goal
of this type of validation is to check whether there is a
strong correlation between the chemical structures and the bi-
ological activity. In this validation test, we chose 95% con-
fidence level, and thus 19 spreadsheets were generated. These
random spreadsheets were used to generate hypotheses em-
ploying exactly the same features as used in generating the
initial hypothesis. The results of the Cat-Scramble runs are
listed in Table 3. The data of cross validation clearly indi-
cates that all values generated after randomization produced
hypotheses with no significant value. Besides, out of 19 runs,
only one, trial 18, had a correlation value of 0.81, but the
RMS deviation and total cost were very high, which is not

Figure 3. Mapping of the most active molecule, compound 1 (a) and
inactive, compound 18(b) on the best hypothesis model, Hypo1.
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desirable for a good hypothesis. This cross validation also
provided strong confidence on the best pharmacophore
Hypo1.

It is interesting to note that the validated pharmacophore
model has neglected the amidine or guanidine groups as they
had no role in distinguishing active from inactive molecules.
Our aim was to design new compounds lacking amidine or

guanidine groups present in all existing inhibitors, as it is a
liability in the search for oral therapeutic agents. Thus we
have accomplished our goal and therefore propose that our
pharmacophore model, Hypo1, would be very useful in dis-
covering new lead molecules with good uPA inhibitory activ-
ity and also with physicochemical properties.

Trail No. Total cost Fixed cost RMSD Correlation(r)

Results for unscrambled

102.126 95.6861 0.6951 0.973

Result for scrambled

1 187.714 86.7095 2.896 0.283

2 177.213 92.0463 2.653 0.479

3 167.962 92.6271 2.505 0.557

4 149.296 91.9782 2.184 0.69

5 171.178 88.2266 2.628 0.491

6 189.977 80.7265 3.017 0

7 148.049 92.1869 2.037 0.749

8 169.407 90.3984 2.563 0.528

9 158.624 93.1329 2.314 0.643

10 161.692 92.1903 2.405 0.604

11 161.342 90.5658 2.428 0.594

12 172.01 92.0695 2.558 0.534

13 163.985 89.9911 2.467 0.578

14 144.771 90.5026 2.117 0.713

15 142.8 89.3109 2.089 0.723

16 168.271 88.2266 2.571 0.525

17 160.991 92.0314 2.318 0.652

18 134.833 95.7672 1.762 0.813

19 170.33 87.6844 2.601 0.513

The null cost is 189.977 bits.

Table 3. Cat-Scramble Validation test of the best Hypo1

Conclusion

In conclusion, a ligand-based computational approach was
employed to identify molecular structural features required
for an effective uPA inhibitor, in an aim to discover drugs to
prevent and cure its related diseases. A highly predictive
pharmacophore model, Hypo1 was generated based on 24
training set compounds, which consists of three hydrophobic
aromatic groups, one positive ionizable group, and one hy-
drogen-bond acceptor group. The utility of our pharmaco-
phore model on 251 test set compounds showed that the
model is able to accurately differentiate various classes of
uPA inhibitors. Thus, our pharmacophore model should be

Figure 4. Correlation graph drawn between true and Hypo1
estimated activities for test set compounds.

Figure 5. Mapping of one of the most active compound (Test43)
from the test set. Pharmacophore features are color-coded with light
blue for hydrophobic aromatic groups (Z), red for positive ionizable
(PI) group and green for hydrogen-bond acceptor (HA).
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helpful in identifying novel lead compounds with improved
uPA inhibitory activity as well as desired physiological prop-
erties through 3D database searches.
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